- Published on
Model Soup: Improving Deep Learning Through Weight Averaging
- Authors
- Name
- Jared Chung
Model Soup is a simple yet powerful technique that improves deep learning model performance by averaging the weights of multiple models trained on the same task. Unlike traditional ensembling that requires running multiple models at inference time, model soup creates a single model with averaged weights, maintaining the same computational cost as a single model while often achieving superior performance.
In this comprehensive guide, we'll explore the theory behind model soup, its variants, and practical implementations.
Introduction to Model Soup
The Core Idea
Model Soup leverages the observation that when multiple models are trained on the same task with different random initializations or hyperparameters, their weights often lie in similar regions of the loss landscape. By averaging these weights, we can find a point that generalizes better than any individual model.
Key Benefits
- Improved accuracy: Often outperforms individual models and traditional ensembles
- No inference overhead: Single model with same computational cost
- Simple implementation: Just weight averaging - no complex training procedures
- Robust performance: Reduces variance across different training runs
- Better calibration: Often produces more reliable confidence estimates
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import copy
from collections import OrderedDict
from typing import List, Dict, Optional, Tuple
import os
import json
Basic Model Soup Implementation
Simple Weight Averaging
class ModelSoup:
"""Basic Model Soup implementation"""
def __init__(self, model_class, model_kwargs=None):
self.model_class = model_class
self.model_kwargs = model_kwargs or {}
self.ingredient_models = []
self.soup_model = None
def add_model(self, model_path_or_state_dict, weight=1.0):
"""Add a model to the soup ingredients"""
if isinstance(model_path_or_state_dict, str):
# Load model from path
state_dict = torch.load(model_path_or_state_dict, map_location='cpu')
else:
# Use provided state dict
state_dict = model_path_or_state_dict
self.ingredient_models.append({
'state_dict': state_dict,
'weight': weight
})
def create_soup(self, normalize_weights=True):
"""Create soup by averaging model weights"""
if not self.ingredient_models:
raise ValueError("No models added to soup")
# Initialize soup model
self.soup_model = self.model_class(**self.model_kwargs)
soup_state_dict = OrderedDict()
# Get weights for normalization
weights = [model_info['weight'] for model_info in self.ingredient_models]
if normalize_weights:
total_weight = sum(weights)
weights = [w / total_weight for w in weights]
# Initialize with zeros
for key in self.ingredient_models[0]['state_dict'].keys():
soup_state_dict[key] = torch.zeros_like(
self.ingredient_models[0]['state_dict'][key]
)
# Average weights
for i, model_info in enumerate(self.ingredient_models):
state_dict = model_info['state_dict']
weight = weights[i]
for key, param in state_dict.items():
soup_state_dict[key] += weight * param
# Load averaged weights
self.soup_model.load_state_dict(soup_state_dict)
return self.soup_model
def evaluate_ingredients_and_soup(self, test_loader, device='cuda'):
"""Evaluate individual models and soup"""
results = {}
# Evaluate individual ingredients
for i, model_info in enumerate(self.ingredient_models):
model = self.model_class(**self.model_kwargs)
model.load_state_dict(model_info['state_dict'])
model.to(device)
accuracy = self._evaluate_model(model, test_loader, device)
results[f'ingredient_{i}'] = accuracy
print(f"Ingredient {i} accuracy: {accuracy:.4f}")
# Evaluate soup
if self.soup_model is not None:
self.soup_model.to(device)
soup_accuracy = self._evaluate_model(self.soup_model, test_loader, device)
results['soup'] = soup_accuracy
print(f"Soup accuracy: {soup_accuracy:.4f}")
return results
def _evaluate_model(self, model, test_loader, device):
"""Evaluate a single model"""
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
# Example usage
def basic_soup_example():
"""Basic example of creating and evaluating model soup"""
# Assume we have multiple trained model checkpoints
model_paths = [
'model_seed_0.pth',
'model_seed_1.pth',
'model_seed_2.pth',
'model_seed_3.pth'
]
# Create soup
soup = ModelSoup(models.resnet18, {'num_classes': 10})
# Add models with equal weights
for path in model_paths:
soup.add_model(path, weight=1.0)
# Create averaged model
soup_model = soup.create_soup()
return soup_model
Advanced Model Soup Techniques
1. Greedy Soup
Greedy soup iteratively adds models that improve performance:
class GreedySoup(ModelSoup):
"""Greedy Model Soup that selectively adds beneficial models"""
def __init__(self, model_class, model_kwargs=None, validation_loader=None, device='cuda'):
super().__init__(model_class, model_kwargs)
self.validation_loader = validation_loader
self.device = device
self.selected_models = []
self.best_performance = 0.0
def create_greedy_soup(self, candidate_models, max_models=None):
"""Create soup by greedily selecting models"""
if self.validation_loader is None:
raise ValueError("Validation loader required for greedy soup")
# Start with best individual model
best_model_idx = self._find_best_individual_model(candidate_models)
self.selected_models = [candidate_models[best_model_idx]]
# Current soup performance
current_soup = self._create_soup_from_selected()
self.best_performance = self._evaluate_model(
current_soup, self.validation_loader, self.device
)
print(f"Starting with model {best_model_idx}, performance: {self.best_performance:.4f}")
# Remaining candidates
remaining_candidates = [
candidate_models[i] for i in range(len(candidate_models))
if i != best_model_idx
]
# Greedily add models
iteration = 0
while remaining_candidates and (max_models is None or len(self.selected_models) < max_models):
best_candidate_idx = None
best_improvement = 0.0
# Try adding each remaining candidate
for i, candidate in enumerate(remaining_candidates):
# Create temporary soup with candidate added
temp_selected = self.selected_models + [candidate]
temp_soup = self._create_soup_from_models(temp_selected)
# Evaluate performance
performance = self._evaluate_model(
temp_soup, self.validation_loader, self.device
)
improvement = performance - self.best_performance
if improvement > best_improvement:
best_improvement = improvement
best_candidate_idx = i
# Add best candidate if it improves performance
if best_candidate_idx is not None and best_improvement over 0:
best_candidate = remaining_candidates.pop(best_candidate_idx)
self.selected_models.append(best_candidate)
self.best_performance += best_improvement
print(f"Added model {len(self.selected_models)-1}, "
f"performance: {self.best_performance:.4f}")
else:
print("No beneficial candidates found, stopping")
break
iteration += 1
# Create final soup
self.soup_model = self._create_soup_from_selected()
return self.soup_model
def _find_best_individual_model(self, models):
"""Find the best performing individual model"""
best_performance = 0.0
best_model_idx = 0
for i, model_info in enumerate(models):
model = self.model_class(**self.model_kwargs)
model.load_state_dict(model_info['state_dict'])
model.to(self.device)
performance = self._evaluate_model(
model, self.validation_loader, self.device
)
if performance > best_performance:
best_performance = performance
best_model_idx = i
return best_model_idx
def _create_soup_from_selected(self):
"""Create soup from currently selected models"""
return self._create_soup_from_models(self.selected_models)
def _create_soup_from_models(self, models):
"""Create soup from given list of models"""
if not models:
return None
# Create soup model
soup_model = self.model_class(**self.model_kwargs)
soup_state_dict = OrderedDict()
# Initialize with zeros
for key in models[0]['state_dict'].keys():
soup_state_dict[key] = torch.zeros_like(models[0]['state_dict'][key])
# Average weights
for model_info in models:
state_dict = model_info['state_dict']
weight = 1.0 / len(models) # Equal weights
for key, param in state_dict.items():
soup_state_dict[key] += weight * param
soup_model.load_state_dict(soup_state_dict)
return soup_model
2. Learned Mixing Weights
Learn optimal mixing weights for different models:
class LearnedWeightSoup(nn.Module):
"""Model Soup with learned mixing weights"""
def __init__(self, models, num_classes, device='cuda'):
super().__init__()
self.models = [model.to(device) for model in models]
self.num_models = len(models)
self.device = device
# Learnable mixing weights
self.mixing_weights = nn.Parameter(torch.ones(self.num_models) / self.num_models)
# Freeze base model parameters
for model in self.models:
for param in model.parameters():
param.requires_grad = False
def forward(self, x):
"""Forward pass with learned mixing"""
# Get predictions from all models
outputs = []
for model in self.models:
with torch.no_grad():
output = model(x)
outputs.append(output)
# Stack outputs
stacked_outputs = torch.stack(outputs, dim=0) # (num_models, batch_size, num_classes)
# Apply softmax to mixing weights
normalized_weights = F.softmax(self.mixing_weights, dim=0)
# Weighted combination
mixed_output = torch.sum(
normalized_weights.view(-1, 1, 1) * stacked_outputs, dim=0
)
return mixed_output
def get_mixing_weights(self):
"""Get current mixing weights"""
return F.softmax(self.mixing_weights, dim=0).detach().cpu().numpy()
def train_learned_weights(learned_soup, train_loader, val_loader,
num_epochs=10, lr=0.01, device='cuda'):
"""Train the mixing weights"""
optimizer = torch.optim.Adam([learned_soup.mixing_weights], lr=lr)
criterion = nn.CrossEntropyLoss()
best_val_acc = 0.0
for epoch in range(num_epochs):
# Training
learned_soup.train()
train_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = learned_soup(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
# Validation
learned_soup.eval()
val_acc = evaluate_model(learned_soup, val_loader, device)
print(f"Epoch {epoch+1}/{num_epochs}")
print(f" Train Loss: {train_loss/len(train_loader):.4f}")
print(f" Val Accuracy: {val_acc:.4f}")
print(f" Mixing Weights: {learned_soup.get_mixing_weights()}")
if val_acc > best_val_acc:
best_val_acc = val_acc
return best_val_acc
3. Layer-wise Soup
Create soups at different layer granularities:
class LayerwiseSoup:
"""Layer-wise model soup with selective averaging"""
def __init__(self, model_class, model_kwargs=None):
self.model_class = model_class
self.model_kwargs = model_kwargs or {}
self.ingredient_models = []
def add_model(self, state_dict, weight=1.0):
"""Add a model to ingredients"""
self.ingredient_models.append({
'state_dict': state_dict,
'weight': weight
})
def create_layerwise_soup(self, layer_selection_strategy='all',
validation_loader=None, device='cuda'):
"""Create soup with layer-wise selection"""
if layer_selection_strategy == 'all':
# Average all layers
return self._create_full_soup()
elif layer_selection_strategy == 'selective':
# Selectively average layers based on performance
return self._create_selective_soup(validation_loader, device)
elif layer_selection_strategy == 'classifier_only':
# Only average classifier layers
return self._create_classifier_soup()
else:
raise ValueError(f"Unknown strategy: {layer_selection_strategy}")
def _create_full_soup(self):
"""Create soup by averaging all layers"""
soup_model = self.model_class(**self.model_kwargs)
soup_state_dict = OrderedDict()
# Get normalized weights
weights = [model_info['weight'] for model_info in self.ingredient_models]
total_weight = sum(weights)
weights = [w / total_weight for w in weights]
# Initialize
for key in self.ingredient_models[0]['state_dict'].keys():
soup_state_dict[key] = torch.zeros_like(
self.ingredient_models[0]['state_dict'][key]
)
# Average
for i, model_info in enumerate(self.ingredient_models):
for key, param in model_info['state_dict'].items():
soup_state_dict[key] += weights[i] * param
soup_model.load_state_dict(soup_state_dict)
return soup_model
def _create_selective_soup(self, validation_loader, device):
"""Create soup by selectively averaging beneficial layers"""
if validation_loader is None:
raise ValueError("Validation loader required for selective soup")
# Get base model (first ingredient)
base_model = self.model_class(**self.model_kwargs)
base_model.load_state_dict(self.ingredient_models[0]['state_dict'])
base_performance = self._evaluate_model(base_model, validation_loader, device)
soup_state_dict = copy.deepcopy(self.ingredient_models[0]['state_dict'])
layer_names = list(soup_state_dict.keys())
# Test averaging each layer group
for layer_prefix in ['conv', 'bn', 'fc', 'classifier']:
matching_layers = [name for name in layer_names if layer_prefix in name]
if not matching_layers:
continue
# Create temporary soup with this layer group averaged
temp_state_dict = copy.deepcopy(soup_state_dict)
# Average matching layers
for layer_name in matching_layers:
temp_state_dict[layer_name] = torch.zeros_like(
self.ingredient_models[0]['state_dict'][layer_name]
)
for model_info in self.ingredient_models:
weight = model_info['weight'] / sum(m['weight'] for m in self.ingredient_models)
temp_state_dict[layer_name] += weight * model_info['state_dict'][layer_name]
# Test performance
temp_model = self.model_class(**self.model_kwargs)
temp_model.load_state_dict(temp_state_dict)
temp_performance = self._evaluate_model(temp_model, validation_loader, device)
# Keep changes if improvement
if temp_performance > base_performance:
soup_state_dict = temp_state_dict
base_performance = temp_performance
print(f"Averaged {layer_prefix} layers: {temp_performance:.4f}")
# Create final soup
soup_model = self.model_class(**self.model_kwargs)
soup_model.load_state_dict(soup_state_dict)
return soup_model
def _create_classifier_soup(self):
"""Create soup by only averaging classifier layers"""
# Use first model as base
soup_state_dict = copy.deepcopy(self.ingredient_models[0]['state_dict'])
# Find classifier layers (typically contain 'fc' or 'classifier')
classifier_keys = [key for key in soup_state_dict.keys()
if 'fc' in key or 'classifier' in key or 'head' in key]
if not classifier_keys:
print("No classifier layers found, using full soup")
return self._create_full_soup()
# Average only classifier layers
weights = [model_info['weight'] for model_info in self.ingredient_models]
total_weight = sum(weights)
weights = [w / total_weight for w in weights]
for key in classifier_keys:
soup_state_dict[key] = torch.zeros_like(soup_state_dict[key])
for i, model_info in enumerate(self.ingredient_models):
soup_state_dict[key] += weights[i] * model_info['state_dict'][key]
# Create soup model
soup_model = self.model_class(**self.model_kwargs)
soup_model.load_state_dict(soup_state_dict)
return soup_model
def _evaluate_model(self, model, test_loader, device):
"""Evaluate model performance"""
model.to(device)
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
Domain-Specific Model Soups
1. Vision Model Soup
class VisionModelSoup:
"""Specialized soup for computer vision models"""
def __init__(self, architecture='resnet50', num_classes=1000, pretrained=True):
self.architecture = architecture
self.num_classes = num_classes
self.pretrained = pretrained
self.models = []
def train_diverse_models(self, train_loader, val_loader, num_models=5,
epochs_per_model=10, device='cuda'):
"""Train diverse models for soup ingredients"""
training_configs = [
{'lr': 0.01, 'weight_decay': 1e-4, 'optimizer': 'sgd'},
{'lr': 0.001, 'weight_decay': 1e-3, 'optimizer': 'adam'},
{'lr': 0.005, 'weight_decay': 5e-4, 'optimizer': 'sgd'},
{'lr': 0.002, 'weight_decay': 1e-4, 'optimizer': 'adamw'},
{'lr': 0.01, 'weight_decay': 1e-5, 'optimizer': 'sgd'},
]
for i in range(min(num_models, len(training_configs))):
print(f"\nTraining model {i+1}/{num_models}")
config = training_configs[i]
# Create model
if self.architecture == 'resnet50':
model = models.resnet50(pretrained=self.pretrained)
model.fc = nn.Linear(model.fc.in_features, self.num_classes)
else:
raise ValueError(f"Unsupported architecture: {self.architecture}")
model = model.to(device)
# Setup optimizer
if config['optimizer'] == 'sgd':
optimizer = torch.optim.SGD(
model.parameters(),
lr=config['lr'],
weight_decay=config['weight_decay'],
momentum=0.9
)
elif config['optimizer'] == 'adam':
optimizer = torch.optim.Adam(
model.parameters(),
lr=config['lr'],
weight_decay=config['weight_decay']
)
elif config['optimizer'] == 'adamw':
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config['lr'],
weight_decay=config['weight_decay']
)
# Train model
trained_model = self._train_single_model(
model, train_loader, val_loader, optimizer, epochs_per_model, device
)
self.models.append(trained_model.state_dict())
def _train_single_model(self, model, train_loader, val_loader,
optimizer, epochs, device):
"""Train a single model"""
criterion = nn.CrossEntropyLoss()
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs)
best_val_acc = 0.0
best_state_dict = None
for epoch in range(epochs):
# Training
model.train()
train_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
# Validation
model.eval()
val_acc = 0.0
with torch.no_grad():
correct = 0
total = 0
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
val_acc = correct / total
scheduler.step()
if val_acc > best_val_acc:
best_val_acc = val_acc
best_state_dict = copy.deepcopy(model.state_dict())
print(f" Epoch {epoch+1}: Loss: {train_loss/len(train_loader):.4f}, "
f"Val Acc: {val_acc:.4f}")
# Load best weights
model.load_state_dict(best_state_dict)
return model
def create_vision_soup(self, soup_type='uniform'):
"""Create vision-specific soup"""
if not self.models:
raise ValueError("No models trained. Call train_diverse_models first.")
# Create soup
soup = ModelSoup(
lambda: models.resnet50(pretrained=False),
{'num_classes': self.num_classes}
)
if soup_type == 'uniform':
# Equal weights
for state_dict in self.models:
soup.add_model(state_dict, weight=1.0)
elif soup_type == 'performance_weighted':
# Weight by validation performance (would need to track this)
# Simplified: use uniform for now
for state_dict in self.models:
soup.add_model(state_dict, weight=1.0)
return soup.create_soup()
2. NLP Model Soup
class NLPModelSoup:
"""Model soup for NLP tasks"""
def __init__(self, model_class, tokenizer, num_labels):
self.model_class = model_class
self.tokenizer = tokenizer
self.num_labels = num_labels
self.models = []
def fine_tune_diverse_models(self, train_dataset, val_dataset, num_models=3):
"""Fine-tune diverse models for different seeds/hyperparameters"""
configs = [
{'learning_rate': 2e-5, 'warmup_steps': 500, 'seed': 42},
{'learning_rate': 3e-5, 'warmup_steps': 1000, 'seed': 123},
{'learning_rate': 5e-5, 'warmup_steps': 250, 'seed': 456},
]
for i, config in enumerate(configs[:num_models]):
print(f"Training model {i+1} with config: {config}")
# Set seed
torch.manual_seed(config['seed'])
# Create model
model = self.model_class.from_pretrained(
'bert-base-uncased',
num_labels=self.num_labels
)
# Train model (simplified training loop)
trained_model = self._fine_tune_model(model, train_dataset, val_dataset, config)
self.models.append(trained_model.state_dict())
def _fine_tune_model(self, model, train_dataset, val_dataset, config):
"""Fine-tune a single model"""
# This would contain the actual fine-tuning logic
# For brevity, returning the model as-is
return model
def create_nlp_soup(self):
"""Create NLP model soup"""
if not self.models:
raise ValueError("No models fine-tuned")
# Create base model
soup_model = self.model_class.from_pretrained(
'bert-base-uncased',
num_labels=self.num_labels
)
# Average weights
soup_state_dict = OrderedDict()
# Initialize with zeros
for key in self.models[0].keys():
soup_state_dict[key] = torch.zeros_like(self.models[0][key])
# Average
for state_dict in self.models:
for key, param in state_dict.items():
soup_state_dict[key] += param / len(self.models)
soup_model.load_state_dict(soup_state_dict)
return soup_model
Evaluation and Analysis
Comprehensive Evaluation Framework
class SoupEvaluator:
"""Comprehensive evaluation of model soups"""
def __init__(self, test_loaders, device='cuda'):
self.test_loaders = test_loaders # Dict of test loaders
self.device = device
def evaluate_comprehensive(self, soup_model, ingredient_models):
"""Comprehensive evaluation of soup vs ingredients"""
results = {}
# Evaluate on multiple test sets
for test_name, test_loader in self.test_loaders.items():
print(f"\nEvaluating on {test_name}")
# Individual models
individual_scores = []
for i, model_state in enumerate(ingredient_models):
model = self._create_model_from_state(model_state)
score = self._evaluate_single(model, test_loader)
individual_scores.append(score)
print(f" Ingredient {i}: {score:.4f}")
# Soup model
soup_score = self._evaluate_single(soup_model, test_loader)
print(f" Soup: {soup_score:.4f}")
# Traditional ensemble
ensemble_score = self._evaluate_ensemble(ingredient_models, test_loader)
print(f" Ensemble: {ensemble_score:.4f}")
results[test_name] = {
'individual': individual_scores,
'soup': soup_score,
'ensemble': ensemble_score,
'improvement_over_best': soup_score - max(individual_scores),
'improvement_over_avg': soup_score - np.mean(individual_scores)
}
return results
def _evaluate_single(self, model, test_loader):
"""Evaluate single model"""
model.to(self.device)
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_loader:
inputs, targets = inputs.to(self.device), targets.to(self.device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
def _evaluate_ensemble(self, ingredient_models, test_loader):
"""Evaluate traditional ensemble"""
models = [self._create_model_from_state(state) for state in ingredient_models]
for model in models:
model.to(self.device)
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_loader:
inputs, targets = inputs.to(self.device), targets.to(self.device)
# Average predictions
ensemble_output = None
for model in models:
output = model(inputs)
if ensemble_output is None:
ensemble_output = output
else:
ensemble_output += output
ensemble_output /= len(models)
_, predicted = torch.max(ensemble_output.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
return correct / total
def _create_model_from_state(self, state_dict):
"""Create model from state dict - needs to be implemented based on your model"""
# This is a placeholder - implement based on your specific model architecture
pass
def plot_results(self, results):
"""Plot evaluation results"""
datasets = list(results.keys())
soup_scores = [results[d]['soup'] for d in datasets]
avg_individual = [np.mean(results[d]['individual']) for d in datasets]
ensemble_scores = [results[d]['ensemble'] for d in datasets]
x = np.arange(len(datasets))
width = 0.25
fig, ax = plt.subplots(figsize=(12, 6))
bars1 = ax.bar(x - width, avg_individual, width, label='Avg Individual', alpha=0.8)
bars2 = ax.bar(x, soup_scores, width, label='Soup', alpha=0.8)
bars3 = ax.bar(x + width, ensemble_scores, width, label='Ensemble', alpha=0.8)
ax.set_xlabel('Test Dataset')
ax.set_ylabel('Accuracy')
ax.set_title('Model Soup vs Individual Models vs Ensemble')
ax.set_xticks(x)
ax.set_xticklabels(datasets)
ax.legend()
# Add value labels
for bars in [bars1, bars2, bars3]:
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.005,
f'{height:.3f}', ha='center', va='bottom')
plt.tight_layout()
plt.show()
Theoretical Analysis
class SoupAnalyzer:
"""Analyze model soup from theoretical perspective"""
def __init__(self):
pass
def analyze_weight_similarity(self, ingredient_models):
"""Analyze similarity between ingredient model weights"""
similarities = {}
# Get all parameter names
param_names = list(ingredient_models[0].keys())
for param_name in param_names:
if 'weight' in param_name: # Only analyze weight parameters
# Get parameters from all models
params = [model[param_name].flatten() for model in ingredient_models]
param_matrix = torch.stack(params)
# Compute pairwise cosine similarities
cosine_sim = F.cosine_similarity(
param_matrix.unsqueeze(1),
param_matrix.unsqueeze(0),
dim=2
)
# Store statistics
similarities[param_name] = {
'mean_similarity': cosine_sim[torch.triu(torch.ones_like(cosine_sim), diagonal=1) == 1].mean().item(),
'min_similarity': cosine_sim[torch.triu(torch.ones_like(cosine_sim), diagonal=1) == 1].min().item(),
'max_similarity': cosine_sim[torch.triu(torch.ones_like(cosine_sim), diagonal=1) == 1].max().item()
}
return similarities
def analyze_loss_landscape(self, soup_model, ingredient_models, test_loader, device='cuda'):
"""Analyze loss landscape around soup and ingredient models"""
def compute_loss(model, loader):
model.eval()
total_loss = 0.0
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for inputs, targets in loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.item()
return total_loss / len(loader)
# Compute losses
soup_loss = compute_loss(soup_model, test_loader)
individual_losses = []
for state_dict in ingredient_models:
model = self._create_model_from_state(state_dict)
loss = compute_loss(model, test_loader)
individual_losses.append(loss)
# Analyze interpolation paths
interpolation_losses = []
alphas = np.linspace(0, 1, 11)
for i in range(len(ingredient_models)):
for j in range(i+1, len(ingredient_models)):
losses_path = []
for alpha in alphas:
# Interpolate between models i and j
interpolated_state = {}
for key in ingredient_models[i].keys():
interpolated_state[key] = (
alpha * ingredient_models[i][key] +
(1 - alpha) * ingredient_models[j][key]
)
model = self._create_model_from_state(interpolated_state)
loss = compute_loss(model, test_loader)
losses_path.append(loss)
interpolation_losses.append(losses_path)
return {
'soup_loss': soup_loss,
'individual_losses': individual_losses,
'interpolation_paths': interpolation_losses,
'alphas': alphas
}
def plot_loss_landscape(self, landscape_results):
"""Plot loss landscape analysis"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# Individual vs soup losses
individual_losses = landscape_results['individual_losses']
soup_loss = landscape_results['soup_loss']
ax1.bar(range(len(individual_losses)), individual_losses, alpha=0.7, label='Individual Models')
ax1.axhline(y=soup_loss, color='red', linestyle='--', label='Soup Model')
ax1.set_xlabel('Model Index')
ax1.set_ylabel('Test Loss')
ax1.set_title('Individual vs Soup Model Losses')
ax1.legend()
# Interpolation paths
alphas = landscape_results['alphas']
paths = landscape_results['interpolation_paths']
for i, path in enumerate(paths):
ax2.plot(alphas, path, alpha=0.7, label=f'Path {i+1}')
ax2.axhline(y=soup_loss, color='red', linestyle='--', label='Soup Loss')
ax2.set_xlabel('Interpolation Factor (α)')
ax2.set_ylabel('Test Loss')
ax2.set_title('Loss Along Interpolation Paths')
ax2.legend()
plt.tight_layout()
plt.show()
Best Practices and Guidelines
When to Use Model Soup
def soup_recommendation_system(task_type, num_models, diversity_score, computational_budget):
"""Recommend whether to use model soup based on context"""
recommendations = []
# Check basic requirements
if num_models under 2:
return ["Need at least 2 models for soup"]
# Task-specific recommendations
if task_type in ['classification', 'regression']:
recommendations.append("✓ Classification/regression tasks are well-suited for model soup")
elif task_type in ['generation', 'structured_prediction']:
recommendations.append("⚠ Generation tasks may require more careful soup preparation")
# Diversity recommendations
if diversity_score over 0.7:
recommendations.append("✓ High model diversity suggests good soup potential")
elif diversity_score under 0.3:
recommendations.append("⚠ Low diversity may limit soup benefits")
# Computational considerations
if computational_budget == 'low':
recommendations.append("✓ Soup provides better accuracy without inference overhead")
elif computational_budget == 'high':
recommendations.append("? Consider comparing soup vs traditional ensemble")
return recommendations
# Example usage
task = 'classification'
models = 5
diversity = 0.8
budget = 'low'
recommendations = soup_recommendation_system(task, models, diversity, budget)
for rec in recommendations:
print(rec)
Conclusion
Model Soup offers a compelling approach to improving deep learning performance through simple weight averaging. Key insights:
Advantages
- No inference overhead: Single model with same computational cost
- Improved robustness: Reduces variance across training runs
- Simple implementation: Just weight averaging
- Better calibration: Often more reliable confidence estimates
Best Practices
- Diverse ingredients: Use models with different hyperparameters, seeds, or training procedures
- Validation-guided selection: Use greedy soup for optimal model selection
- Layer-wise analysis: Consider selective averaging of different layer types
- Domain-specific adaptations: Tailor soup recipes to specific task requirements
Limitations
- Requires multiple trained models: Initial training cost
- Task dependency: Effectiveness varies across different tasks
- Mode connectivity: Assumes models lie in connected loss regions
Future Directions
- Learned soup recipes: Automatically discovering optimal mixing strategies
- Online soups: Dynamically updating soup during training
- Structured soups: Incorporating architectural constraints in averaging
- Theoretical understanding: Better characterization of when soups work
Model Soup represents an elegant solution to the ensemble vs. efficiency trade-off, providing a practical way to improve model performance without computational overhead.
References
- Wortsman, M., et al. (2022). "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time."
- Garipov, T., et al. (2018). "Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs."
- Frankle, J., et al. (2020). "Linear mode connectivity and the lottery ticket hypothesis."
- Fort, S., et al. (2019). "Deep ensembles: A loss landscape perspective."